References

Akbari, P., Braber, S., Gremmels, H., Koelink, P. J., Verheijden, K. A. T., Garssen, J., & Fink-Gremmels, J. (2014). Deoxynivalenol: A trigger for intestinal integrity breakdown. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 28(6), 2414–2429. doi:10.1096/fj.13-238717


Akbari, P., Braber, S., Varasteh, S., Alizadeh, A., Garssen, J., & Fink-Gremmels, J. (2017). The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Archives of Toxicology, 91(3), 1007–1029. doi:10.1007/s00204-016-1794-8


Alenazi, A., Virk, P., Almoqhem, R., Alsharidah, A., Al-Ghadi, M. Q., Aljabr, W., . . . Albasher, G. (2024). The efficacy of hispidin and magnesium nanoparticles against zearalenone-induced fungal toxicity causing polycystic ovarian syndrome in rats. Biomedicines, 12(5), 943. doi: 10.3390/biomedicines12050943. doi:10.3390/biomedicines12050943


Alshannaq, A., & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 14(6), 10.3390/ijerph14060632. doi:E632 [pii]


Altomare, C., Logrieco, A. F., & Galio, A. (2021). Mycotoxins and mycotoxigenic fungi: Risk management. A challenge for future global food safety. Encyclopedia of mycology, volume 1 (National Research Council ed., pp. 64–73).


Bari, Italy: Elsevier Inc. doi:10.1016/B978-0-12-819990-9.00032-9


Anukul, N., Vangnai, K., & Mahakarnchanakul, W. (2013). Significance of regulation limits in mycotoxin contamination in asia and risk management programs at the national level. Journal of Food and Drug Analysis, 21, 227. doi:10.1016/j.jfda.2013.07.009


Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497–516. doi:10.1128/cmr.16.3.497-516.2003


Cano, P. M., Seeboth, J., Meurens, F., Cognie, J., Abrami, R., Oswald, I. P., & Guzylack-Piriou, L. (2013). Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: An emerging hypothesis through possible modulation of Th17-mediated response. PloS One, 8(1), e53647. doi:10.1371/journal.pone.0053647


Cardenas-Escudero, J., Marmol-Rojas, C., Escribano Pintor, S., Galan-Madruga, D., & Caceres, J. O. (2023). Honey polyphenols: Regulators of human microbiota and health. Food & Function, 14(2), 602–620. doi:10.1039/d2fo02715a


Cunha, S. C., Sa, S. V. M., & Fernandes, J. O. (2018). Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 114, 260–269. doi:S0278-6915(18)30104-2 [pii]

Czaczyk, K., Trojanowska, K., & Mueller, A. (2002). Antifungal activity of bacillus coagulans against fusarium sp. Acta Microbiologica Polonica, 51(3), 275–283.


De Santis, B., Brera, C., Mezzelani, A., Soricelli, S., Ciceri, F., Moretti, G., . . . Raggi, M. E. (2019). Role of mycotoxins in the pathobiology of autism: A first evidence. Nutritional Neuroscience, 22(2), 132–144. doi:10.1080/1028415X.2017.1357793


De Santis, B., Raggi, M. E., Moretti, G., Facchiano, F., Mezzelani, A., Villa, L., . . . Brera, C. (2017). Study on the association among mycotoxins and other variables in children with autism. Toxins, 9(7), 203. doi:10.3390/toxins9070203


De Walle, J. V., Sergent, T., Piront, N., Toussaint, O., Schneider, Y. J., & Larondelle, Y. (2010). Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicology and Applied Pharmacology, 245(3), 291–298. doi:10.1016/j.taap.2010.03.012


Dinleyici, M., Aydemir, O., Yildirim, G. K., Kaya, T. B., & Carman, K. B. (2018). Human mature milk zearalenone and deoxynivalenol levels in turkey. Neuro Endocrinology Letters, 39(4), 325–330. doi:NEL39041812 [pii]


Do, K. H., An, T. J., Oh, S. K., & Moon, Y. (2015). Nation-based occurrence and endogenous biological reduction of mycotoxins in medicinal herbs and spices. Toxins, 7(10), 4111–4130. doi:10.3390/toxins7104111


Dong, F., Xing, Y. J., Lee, Y. W., Mokoena, M. P., Olaniran, A. O., Xu, J. H., & Shi, J. R. (2020). Occurrence of fusarium mycotoxins and toxigenic fusarium species in freshly harvested rice in jiangsu, china. World Mycotoxin Journal, 13(2), 201–211. doi:10.3920/WMJ2019.2477


Food and Agriculture Organization of the United Nations, World Health Organization. (2016). Code of practice for the prevention and reduction of mycotoxin contamination in cereals (CXC 51-2003). (Codex Alimentarius International


Food Standards No. CXC 51-2003). Rome, Italy: Food and Agricultural Organization of the United Nations and World Health Organization.


Food and Drug Administration. (2010). Guidance for industry and FDA: Advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed. (Guidance Document No. FDA-2013-S-0610). Rockville, MD: United States government.


Gan, F., Lin, Z., Tang, J., Chen, X., & Huang, K. (2023). Deoxynivalenol at no-observed adverse-effect levels aggravates DSS-induced colitis through the JAK2/STAT3 signaling pathway in mice. Journal of Agricultural and Food Chemistry, 71(9), 4144–4152. doi:10.1021/acs.jafc.3c00252


Garcia, G. R., Payros, D., Pinton, P., Dogi, C. A., Laffitte, J., Neves, M., . . . Oswald, I. P. (2018). Intestinal toxicity of deoxynivalenol is limited by lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology, 92(2), 983–993. doi:10.1007/s00204-017-2083-x


Garcia-Moraleja, A., Font, G., Manes, J., & Ferrer, E. (2015). Analysis of mycotoxins in coffee and risk assessment in spanish adolescents and adults. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 86, 225–233. doi:10.1016/j.fct.2015.10.014


Gonya, S. (2023). Do we really know what's in our food: The relationship between pediatric crohn's disease and mycotoxin exposure (Masters' Degree). Retrieved from https://www.proquest.com/openview/58fed7091af08de16c40c28da74d0b23/1?pq-origsite=gscholar&cbl=18750&diss=y


Gonya, S.Do we really know what is in our food? the connection between dietary mycotoxin exposure and pediatric crohn’s disease (Master's of Science).


Gonya, S., Kallmerten, P., & Dinapoli, P. (2024). Are infants and children at risk of adverse health effects from dietary deoxynivalenol exposure? an integrative review. International Journal of Environmental Research and Public Health, 21(6), 808. doi: 10.3390/ijerph21060808. doi:10.3390/ijerph21060808


Grenier, B., & Applegate, T. J. (2013). Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins, 5(2), 396–430. doi:10.3390/toxins5020396


Hamed, A. M., Arroyo-Manzanares, N., Garcia-Campana, A. M., & Gamiz-Gracia, L. (2017). Determination of fusarium toxins in functional vegetable milks applying salting-out-assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography tandem mass spectrometry. Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 34(11), 2033–2041. doi:10.1080/19440049.2017.1368722


Jin, J., Zhang, C., Ren, X., Tai, B., & Xing, F. (2023). Metagenome analysis identifies microbial shifts upon deoxynivalenol exposure and post-exposure recovery in the mouse gut. Toxins, 15(4), 243. doi:10.3390/toxins15040243


Kankkunen, P., Rintahaka, J., Aalto, A., Leino, M., Majuri, M. L., Alenius, H., . . . Matikainen, S. (2009). Trichothecene mycotoxins activate inflammatory response in human macrophages. Journal of Immunology (Baltimore, Md.: 1950), 182(10), 6418–6425. doi:10.4049/jimmunol.0803309


Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., . . . Dussort, P. (2016). Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research, 32(4), 179–205. doi:10.1007/s12550-016-0257-7


Keller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism - from biochemistry to genomics. Nature Reviews.Microbiology, 3(12), 937–947. doi:nrmicro1286 [pii]


Li, F., Wang, J., Huang, L., Chen, H., & Wang, C. (2017). Effects of adding clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat. Toxins, 9(12), 10.3390/toxins9120383. doi:E383 [pii]


Li, F., Duan, X., Zhang, L., Jiang, D., Zhao, X., Meng, E., . . . Zhou, J. (2022). Mycotoxin surveillance on wheats in shandong province, china, reveals non-negligible probabilistic health risk of chronic gastrointestinal diseases posed by deoxynivalenol. Environmental Science and Pollution Research International, 29(47), 71826–71839. doi:10.1007/s11356-022-20812-y


Liu, L., Xie, M., & Wei, D. (2022). Biological detoxification of mycotoxins: Current status and future advances. International Journal of Molecular Sciences, 23(3), 1064. doi: 10.3390/ijms23031064. doi:10.3390/ijms23031064


Maidana, L., de Souza, M., & Bracarense, A. P. F. R. L. (2022). Lactobacillus plantarum and deoxynivalenol detoxification: A concise review. Journal of Food Protection, 85(12), 1815–1823. doi:10.4315/JFP-22-077


Mankeviciene, A., Suproniene, S., Brazauskiene, I., & Gruzdeviene, E. (2011). Natural occurrence of fusarium mycotoxins in oil crop seed. Plant Breeding and Seed Science, 63, 109. doi:10.2478/v10129-011-0022-1


Maresca, M. (2013). From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins, 5(4), 784–820. doi:10.3390/toxins5040784


Maresca, M., & Fantini, J. (2010). Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon : Official Journal of the International Society on Toxinology, 56(3), 282–294. doi:10.1016/j.toxicon.2010.04.016


Maresca, M., Mahfoud, R., Garmy, N., & Fantini, J. (2002). The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. The Journal of Nutrition, 132(9), 2723–2731. doi:10.1093/jn/132.9.2723


Maresca, M., Yahi, N., Younes-Sakr, L., Boyron, M., Caporiccio, B., & Fantini, J. (2008). Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1beta effect and increase in the transepithelial passage of commensal bacteria. Toxicology and Applied Pharmacology, 228(1), 84–92. doi:10.1016/j.taap.2007.13


McCormick, S. P. (2013). Microbial detoxification of mycotoxins. Journal of Chemical Ecology, 39(7), 907–918. doi:10.1007/s10886-013-0321-0


Milicevic, D., Nastasijevic, I., & Petrovic, Z. (2016). Mycotoxin in the food supply chain-implications for public health program. Journal of Environmental Science and Health.Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 34(4), 293–319. doi:10.1080/10590501.2016.1236607


Morissette, A., Andre, D. M., Agrinier, A., Varin, T. V., Pilon, G., Flamand, N., . . . Marette, A. (2023). The metabolic benefits of substituting sucrose for maple syrup are associated with a shift in carbohydrate digestion and gut microbiota composition in high-fat high-sucrose diet-fed mice. American Journal of Physiology.Endocrinology and Metabolism, 325(6), E661–E671. doi:10.1152/ajpendo.00065.2023


Notenboom, S., Hoogenveen, R. T., Zeilmaker, M. J., Van den Brand, A. D., Assuncao, R., & Mengelers, M. J. B. (2023). Development of a generic PBK model for human biomonitoring with an application to deoxynivalenol. Toxins, 15(9), 569. doi: 10.3390/toxins15090569. doi:10.3390/toxins15090569


Pestka, J. J. (2010a). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84(9), 663–679. doi:10.1007/s00204-010-0579-8


Pestka, J. J. (2010b). Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins, 2(6), 1300–1317. doi:10.3390/toxins2061300


Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules (Basel, Switzerland), 24(6), 10.3390/molecules24061046. doi:E1046 [pii]


Razafimanjato, H., Benzaria, A., Taieb, N., Guo, X., Vidal, N., Di Scala, C., . . . Maresca, M. (2011). The ribotoxin deoxynivalenol affects the viability and functions of glial cells. Glia, 59(11), 1672–1683. doi:10.1002/glia.21214


Reinholds, I., Bogdanova, E., Pugajeva, I., & Bartkevics, V. (2019). Mycotoxins in herbal teas marketed in latvia and dietary exposure assessment. Food Additives & Contaminants.Part B, Surveillance, 12(3), 199–208. doi:10.1080/19393210.2019.1597927


Rissato, D. F., de Santi Rampazzo, A. P., Borges, S. C., Sousa, F. C., Busso, C., Buttow, N. C., & Natali, M. R. M. (2020). Chronic ingestion of deoxynivalenol-contaminated diet dose-dependently decreases the area of myenteric neurons and gliocytes of rats. Neurogastroenterology and Motility, 32(4), e13770. doi:10.1111/nmo.13770


Saint-Cyr, M. J., Perrin-Guyomard, A., Houee, P., Rolland, J. G., & Laurentie, M. (2013). Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats. PloS One, 8(11), e80578. doi:10.1371/journal.pone.0080578


Saint-Cyr, M. J., Perrin-Guyomard, A., Houee, P., Rolland, J., & Laurentie, M. (2013). Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats. PloS One, 8(11), e80578. doi:10.1371/journal.pone.0080578


Signorini, M. L., Gaggiotti, M., Molineri, A., Chiericatti, C. A., Zapata de Basilico, M. L., Basilico, J. C., & Pisani, M. (2012). Exposure assessment of mycotoxins in cow's milk in argentina. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 50(2), 250–257. doi:10.1016/j.fct.2011.09.036


Soubra, L., Sarkis, D., Hilan, C., & Verger, P. (2009). Occurrence of total aflatoxins, ochratoxin A and deoxynivalenol in foodstuffs available on the lebanese market and their impact on dietary exposure of children and teenagers in beirut. Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 26(2), 189–200. doi:10.1080/02652030802366108


Tan, T., Chen, T., Zhu, W., Gong, L., Yan, Y., Li, Q., . . . Wei, S. (2023). Adverse associations between maternal deoxynivalenol exposure and birth outcomes: A prospective cohort study in china. BMC Medicine, 21(1), 328–5. doi:10.1186/s12916-023-03011-5


Vandenbroucke, V., Croubels, S., Martel, A., Verbrugghe, E., Goossens, J., Van Deun, K., . . . Pasmans, F. (2011). The mycotoxin deoxynivalenol potentiates intestinal inflammation by salmonella typhimurium in porcine ileal loops. PloS One, 6(8), e23871. doi:10.1371/journal.pone.0023871


Vandenbroucke, V., Croubels, S., Verbrugghe, E., Boyen, F., De Backer, P., Ducatelle, R., . . . Pasmans, F. (2009). The mycotoxin deoxynivalenol promotes uptake of salmonella typhimurium in porcine macrophages, associated with ERK1/2 induced cytoskeleton reorganization. Veterinary Research, 40(6), 64. doi:10.1051/vetres/2009045


Wang, J., Zhang, R., Zhai, Q., Liu, J., Li, N., Liu, W., . . . Shen, W. (2019). Metagenomic analysis of gut microbiota alteration in a mouse model exposed to mycotoxin deoxynivalenol. Toxicology and Applied Pharmacology, 372, 47–56. doi:10.1016/j.taap.2019.04.009


Wang, Z., Wu, Q., Kuca, K., Dohnal, V., & Tian, Z. (2014). Deoxynivalenol: Signaling pathways and human exposure risk assessment--an update. Archives of Toxicology, 88(11), 1915–1928. doi:10.1007/s00204-014-1354-z


Winkler, J., Kersten, S., Valenta, H., Meyer, U., Engelhardt, U. H., & Danicke, S. (2015). Development of a multi-toxin method for investigating the carryover of zearalenone, deoxynivalenol and their metabolites into milk of dairy cows. Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 32(3), 371–380. doi:10.1080/19440049.2015.1011714


Wu, J., Yang, G., Chen, J., Li, W., Li, J., Fu, C., . . . Zhu, W. (2014). Investigation for pu-erh tea contamination caused by mycotoxins in a tea market in guangzhou. Journal of Basic & Applied Sciences, 10, 349.

Y

ang, H., Chung, D. H., Kim, Y. B., Choi, Y. H., & Moon, Y. (2008). Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. Toxicology, 243(1-2), 145–154. doi:S0300-483X(07)00677-4 [pii]


Zain, M. Z. (2010). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15, 139. doi:10.1016/j.jscs.2010.06.006


hao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., . . . Liu, Y. (2014). Antagonistic action of bacillus subtilis strain SG6 on fusarium graminearum. PloS One, 9(3), e92486. doi:10.1371/journal.pone.0092486


Zhu, Y., Hassan, Y. I., Lepp, D., Shao, S., & Zhou, T. (2017). Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins, 9(4), 130. doi: 10.3390/toxins9040130. doi:10.3390/toxins9040130